NewsFactChecker: Bayesian, Kernel, and Transformer Claim Detection

Smyan Sengupta
Sankalp Aswani
Sandeep Salwan

Northeastern University, Boston, MA
{sengupta .sm, aswani.sa, salwan. s}@northeastern .edu

Abstract

The rapid spread of misinformation online poses a ma-
jor threat to media credibility and informed public dis-
course. In this work, we investigate three complementary ap-
proaches for automated fact-checking: probabilistic model-
ing via Bayesian inference using Markov Chain Monte Carlo
(MCMC), kernel-based classification using Support Vector
Machines (SVM), and transformer-based deep learning us-
ing a DeBERTa model. Using the LIAR dataset, we train
and evaluate all models using standard metrics, including F1
score, accuracy, and AUC. Our DeBERTa model achieves the
best performance with an F1 score of 0.56 and ROC-AUC
of 0.683, outperforming the TF-IDF + logistic regression
baseline. SVM and Bayesian methods, while slightly lower
in accuracy, offer interpretability and uncertainty estimation.
These results highlight the value of deep contextual embed-
dings in combating misinformation effectively.

Introduction

The digital age has transformed the way information is pro-
duced and consumed. Unfortunately, it has also fueled the
rapid spread of misinformation. Distinguishing factual state-
ments from fabricated claims is critical. News articles, often
containing nuanced or manipulative statements, can sway
public opinion, impact elections, and erode trust in journal-
ism (Wang 2017).

Our goal is to build an Al-powered misinformation de-
tection system capable of evaluating individual claims ex-
tracted from articles. This task is formally a binary classifi-
cation problem: given a claim ¢, the model outputs whether
c is true (1) or false (0). The classification process relies on
linguistic understanding, particularly transformer-based em-
beddings that capture rich contextual meaning from short
statements (He et al. 2021).

In this paper, we explore three different approaches for
claim verification: Bayesian inference using MCMC, sup-
port vector machines (SVM), and deep learning using a De-
BERTa model. We evaluate and compare their performance
on a labeled dataset.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background

Prior work in misinformation detection has leveraged prob-
abilistic models, kernel methods, and deep neural archi-
tectures. BERT-based models have shown strong results in
sentence-level classification (Devlin et al. 2019), and De-
BERTa improves on BERT with disentangled attention and
relative position encoding (He et al. 2021). Traditional base-
lines like logistic regression and SVM using TF-IDF remain
common for benchmarking (Kleinbaum and Klein 2002).

Logistic Regression

Logistic regression is a linear classifier that models the prob-
ability of a binary outcome using the logistic (sigmoid) func-
tion. It is trained using cross-entropy loss and is commonly
applied to text classification with features like TF-IDF
(Kleinbaum and Klein 2002). Term Frequency-Inverse
Document Frequency (TF-IDF) is a statistical technique
used to measure the importance of a word in a specific doc-
ument relative to a collection of documents (the corpus). In
the context of misinformation detection, TF-IDF helps iden-
tify which words in a claim are particularly distinctive or
meaningful compared to other claims in the dataset (Klein-
baum and Klein 2002).

Naive Bayes Classifier

Naive Bayes is a probabilistic model based on Bayes’ The-
orem, assuming feature independence. It performs surpris-
ingly well in high-dimensional settings like text, where word
presence can be treated as independent binary events (Klein-
baum and Klein 2002).

Support Vector Machine (SVM)

SVMs are non-probabilistic margin-based classifiers that
aim to find the optimal hyperplane that separates data into
classes. When combined with kernels, SVMs can handle
non-linear decision boundaries and are widely used in text
classification (Cortes and Vapnik 1995).

Bayesian Inference

We apply Bayesian inference using MCMC sampling to
model the posterior distribution over class labels. This
method not only provides a point estimate but also quan-
tifies prediction uncertainty, which is valuable for trust and
transparency in sensitive applications (Neal 1993).

Transformers and DeBERTa

Transformers are attention-based models capable of captur-
ing contextual relationships between tokens. DeBERTa im-
proves upon BERT with disentangled attention and relative
position encoding, offering enhanced understanding of syn-
tax and semantics (He et al. 2021).

Related Work

Our approach builds on prior work in natural language
processing and misinformation detection. ROBERTa offers
performance improvements over BERT (Liu et al. 2019),
though we prioritize DeBERTa for its enhanced token repre-
sentations.

Early work in claim verification focused on rule-based
and statistical classifiers. Wang introduced the LIAR dataset,
establishing benchmark accuracy using logistic regression
and SVM on TF-IDF features (Wang 2017). Devlin et al.
(Devlin et al. 2019) advanced the field with BERT, enabling
pre-trained contextual embeddings, while Liu et al. im-
proved training dynamics with RoOBERTa (Liu et al. 2019).

More recently, He et al. proposed DeBERTa, which en-
hances BERT by disentangling positional and content infor-
mation, leading to stronger sentence-level performance (He
et al. 2021). Probabilistic approaches like Bayesian classi-
fiers have also been explored for their interpretability, espe-
cially in low-resource settings.

Bayesian inference methods have become increasingly
relevant for misinformation detection due to their ability
to model predictive uncertainty. Najar et al. (Najar, Za-
mzami, and Bouguila 2019) showcase the effectiveness of
MCMC-based learning, utilizing Metropolis-Hastings and
Gibbs sampling to train Bayesian classifiers for fake news
detection. The results of their model show that Bayesian
approaches outperform traditional classifiers in both accu-
racy and robustness, and are particularly useful when facing
noisy or ambiguous claims.

Unlike prior work, we compare these paradigms side-by-
side—Bayesian inference, kernel methods (SVM), and deep
contextual models (DeBERTa). While some prior studies
have incorporated structured metadata, our focus remains on
evaluating the effectiveness of textual signals alone in driv-
ing robust misinformation detection.

Dataset

We use the LIAR dataset, which contains 12.8K labeled
short statements from PolitiFact.com, annotated as pants-
fire, false, barely-true, half-true, mostly-true, or true (Wang
2017). For our binary classification task, we simplify la-
bels into two classes: true (mostly-true, true) and false
(pants-fire, false, barely-true, half-true). Metadata includes
speaker, job title, party affiliation, state, context, and cred-
ibility counts. We split the dataset into 80% training, 10%
validation, and 10% test sets, ensuring stratified sampling
across labels.

Formal Problem and Model Description
General Formal Problem
Claim Extraction Let a be the raw article text:
ae¥” la] <L =8192.

Split a on sentence delimiters {*.’,*?",‘""} into {s1,..., S, }
with |s;| < S = 256. From each s;, extract up to K = 64
claims {c1,..., ¢}, each |¢j| < C = 128, via a determin-
istic pattern (e.g. regex).

Encode each claim by

Ty = ¢(cj) € Rda

where ¢ is a fixed encoder (e.g. TF-IDF or pretrained em-
bedding map).

The ML box. Define the probabilistic classifier

fo:RY = [0,1], p; = fo(x;) = Pr(y; = 1| z)),
with binary label y; € {0 (true), 1 (false)}.

Training. Given a training set {(z;,y;)}2
minimizing

J=1s learn 6 by

0*:argmei [y;Inp;—(1— yj)ln(l_ﬁj)}"‘)‘”@“%-

HMZ

Article-level score. On a new article a, extract its k
claims, compute p1, ..., Py, and output both {p,} and the
overall credibility

k
Credibility(a) = 100(1 -1%7) € [0,100].

j=1

Kernel-Based Classifier: Support Vector Machine
We define an SVM that takes each claim’s feature vector
and predicts its truthfulness with a maximum-margin hyper-
plane.
Let
=[x, ...,24]7 € RY,
ye{-1,41}, (41 = false, —1 = true).
Training solves the soft-margin problem:

S ||wH2+C’Z@ st yi(who(z:)+b) > 1-&,
where ¢ : R4 — ’H is an implicit mapping induced by a
kernel K(z;,z;) = (¢(x;), ¢(z;)), and C > 0 is the cost
parameter.
Common kernels:
K(zi, ;) = iy, (yaiwj+r)?,
At test time, the decision score is

Zazyz (zi,z) + b,

where {«; } are the dual varlables. We convert this score into
a probability via Platt scaling:

y = ! 0,1
e) B

exp (=7 [lzi—a;|*).

Transformer-Based Model: DeBERTa (Text Only)

We define a DeBERTa-based classifier that operates solely
on the unstructured claim text. Although metadata features
were explored during model design, our final implementa-
tion utilizes only the claim text due to time constraints and
model simplicity.

Let:

s c = [wy,ws,...,wy] € Z%: a tokenized claim rep-
resented as a sequence of wordpiece token IDs, where
L < 128 (maximum input length).

* h, = DeBERTa(c) € R7%: the [CLS] embedding pro-
duced by the pre-trained DeBERTa model fine-tuned for
this task.

The embedding is passed through a feedforward neural
network with one hidden layer:

a = ReLU(W1h. + by) 1)
§=oc(Waa + by) 2)
Where:
o W, € RhXT68 p, c RI: parameters of the hidden layer
o Wy € RY*" by € R: parameters of the output layer

* o sigmoid function, producing § € (0, 1), the predicted
probability the claim is true

Loss Function. To address class imbalance, we use the
Focal Loss (Lin et al. 2017):

Lroca = —a(1—9)"ylog(g) — (1 —a)§7 (1 —y)log(1—7)
Where:

* y € {0, 1}: ground truth label

* o = 0.75: weighting factor for class imbalance

* v = 2: focusing parameter emphasizing hard examples

Bayesian Inference/Multiclass Logistic Regression
with MCMC

We define a Bayesian probabilistic classifier to model the
distribution over claim labels using multinomial logistic re-
gression. This model passes linear activations through a soft-
max function in order to assign class probabilities.

Let:

+ X ¢ R™ 4: input matrix with n samples and d features
(sentence embeddings)

* y€{0,1,..., K — 1}™: class labels for K categories; in
our case, K =6

o W € R>K o € RE: model weights and class biases

The model defines a probability distribution over the la-
bels using the softmax function:

27
e® wi+agk

ply="k|z)= K et

Prior Distributions. We place Gaussian priors over the
weights and biases:

w;; ~ N (0, o?), ap~N(0,0%)

Prior to seeing any data, the model parameters are very likely
to be centered around zero and have moderate variance. The
priors act as a regularizer, in order to discourage overly large
weights and help prevent overfitting. This is especially im-
portant when the number of features is high relative to the
number of samples. The standard deviation o controls the
strength of this regularization (smaller o means that there is
stronger shrinkage toward 0).

Log Posterior. Given the data, we must compute the pos-
terior distribution of the parameters. The log posterior used
for inference is:

logp(W,a | X,y) oc logp(y | X, W, a)+log p(W)+log p(«ar)

The first term is the log-likelihood. The second and third
terms are the log priors over the parameters. We do not ac-
tually compute the full posterior distribution using a closed-
form solution; rather, we approximate it using MCMC sam-
pling. The log-likelihood term is given by:

logp(y | X, W,a) => logp(y; | x;, W,)

i=1

Hamiltonian Monte Carlo Algorithm. In HMC, each

sample is treated as a position # in a physical system. To

simulate dynamics, we introduce a momentum variable p

and define a total energy using Hamiltonian mechanics.
Let:

+ § € RP: position vector representing the model parame-
ters (flattened from W and «)

e p € RP: momentum vector associated with 6, sampled
from a standard multivariate normal distribution

First, we calculate the potential energy U () of the sys-
tem:
U(0) = —logp(0|X,y)

where 6 is the position (model parameters) and p(6) is the
prior probability distribution. Next, we calculate the kinetic
energy K (p) of the system:

K(p) = %pr
where p is the momentum, sampled from a Gaussian distri-
bution. Next, we calculate the Hamiltonian, representing the
total energy of the system. This is the sum of the potential
and kinetic energies:

H(0,p) =U(0) + K(p)

To simulate Hamiltonian dynamics, we use the leapfrog
integration method to update the position and momentum
iteratively. For a step size ¢ and number of steps L, the
leapfrog steps are:

€
p<—p—§V9U(9)
0« 0+ep

€
p<—p—§VeU(9)

This is repeated L times to propose a new state
(Bprop, Pprop)- After simulation, the momentum is negated to
preserve detailed balance: p < —p.

To decide whether or not to accept a sample, calculate the
difference in energy (Hamiltonians):

AH = H(0p7'op7pprop) - H(ainitapinit)
Then, we accept the sample with a probability o where:
o = min(e 2 1)

Any reduction in energy will be accepted. An increase in
energy will be accepted with a probability of e=*# in order
to allow for exploration of other parts of the distribution (Lee
2025).

Methodology

We implemented and evaluated three distinct approaches
to claim verification: a transformer-based model using De-
BERTa, a Support Vector Machine (SVM) classifier, and a
Bayesian inference model using Markov Chain Monte Carlo
(MCMC) sampling. This section outlines the implementa-
tion details of each.

DeBERTa (Text Only)

Our main model fine-tunes the ‘microsoft/deberta-base’
transformer to process tokenized claim text. While metadata
integration was considered, the final implementation uses
only the claim text due to simplicity and reproducibility.

* Training configuration:

Epochs: 5 (with early stopping, patience = 2)
Batch size: 16

Max token length: 128

Optimizer: AdamW

Learning rate: 2 x 10~°

Loss function: Focal Loss with o = 0.75, v = 2

Design Choice: Fine-Tuning vs. Training from
Scratch

While training a transformer from scratch is theoretically
ideal, it is computationally prohibitive in our setting due to
resource constraints and dataset size. Instead, we fine-tuned
a pre-trained DeBERTa model, which is standard in NLP re-
search and enables effective transfer learning. Fine-tuning
allows the model to adapt to claim verification patterns spe-
cific to LIAR while leveraging prior linguistic knowledge
learned from large corpora.

Support Vector Machine (SVM)

We also implemented a Support Vector Machine (SVM),
a supervised learning algorithm effective for classification
tasks, particularly in high-dimensional spaces often encoun-
tered with text features. The core idea of SVM is to find
an optimal hyperplane that acts as a decision boundary, sep-
arating the data points belonging to the 'True’ and ’False’
classes. SVM aims to maximize the margin, which is the
distance between this hyperplane and the nearest data points
(support vectors) from each class, thereby enhancing the
model’s generalization capability.

For datasets where classes are not linearly separable in the
original feature space, SVM employs the kernel trick. This
technique allows the algorithm to implicitly map the input
data into a higher-dimensional space where linear separation
might be possible, without explicitly performing the compu-
tationally expensive transformation. This enables SVMs to
effectively model complex, non-linear decision boundaries
using various kernel functions (e.g., Linear, Polynomial, Ra-
dial Basis Function (RBF)).

To handle cases where data points might be misclassi-
fied or fall within the margin, SVMs can use a soft margin
approach, introducing a regularization parameter (often de-
noted as C) to balance the trade-off between maximizing the
margin and minimizing classification errors.

* Training configuration:

Model: SVM (SVC, with possible kernel approxima-
tion)

Features: TF-IDF pipeline (x? k=1000, SVD n=100,
Scaling)

Tuning: 3-fold Stratified CV Grid Search (Optimizing
F1 Score)

Kernel: Tuned (’linear’, 'rbf”)
C: Tuned (€ {1,10})
Gamma: Tuned (€ {’scale’, 0.1} for RBF)

Design Choice: Kernel Selection

The choice of kernel function is critical in SVM perfor-
mance. While a linear kernel is suitable for linearly sepa-
rable data, non-linear kernels like RBF or Polynomial are
necessary when the relationship between features and the
class label is more complex. The RBF kernel, for instance,
is often effective for text classification tasks as it can cap-
ture intricate patterns. However, selecting the optimal kernel
and its associated hyperparameters (like C and gamma for
RBF) typically requires careful tuning, often through tech-
niques like grid search with cross-validation, to achieve the
best performance for the specific dataset and task.

Bayesian Inference with MCMC

We also implemented a Bayesian Inference algorithm using
a Markov Chain Monte Carlo (MCMC) algorithm, specif-
ically Hamiltonian Monte Carlo (HMC). We first prepro-
cess the data from the LIAR dataset by removing stopwords,
normalizing to all-lowercase, and converting the text to em-
beddings using the all-MiniLM-L6-v2 sentence transformer.
After this, we run the HMC algorithm.

Multiple values were experimented with for the size of the
embeddings, number of samples, burn-in proportion, step
size, and number of leapfrog steps. We found 5000 samples
with 1000 (£) of those samples being burn-in to be an opti-
mal balance between accuracy and speed. A similar balance
was found with 10 leapfrog steps, as it takes enough steps
per iteration to produce a meaningful sample, but not too
many. By the same token, the step size of 0.01 was chosen
after experimenting with various step sizes from 0.001 to
0.1, as it allows a large enough step for proper exploration
but not so large as to skip over crucial portions of the distri-
bution.

Training configuration:

Model: Bayesian Multinomial Logistic Regression
Input Features: Sentence embeddings (MiniLM)
Prior: Gaussian (i = 0, 0 = 3) on weights and biases
Sampler: Hamiltonian Monte Carlo (HMC)

Samples: 5000 total samples

Burn-in: 1000 samples

Step size (¢): 0.01

Leapfrog steps (L): 10

Design Choice: Hamiltonian Monte Carlo Sampler

Our motivation for adopting MCMC comes from the fact
that Bayesian models are more accurate and robust than tra-
ditional classifiers such as our baseline logistic regression
model, especially under noisy or ambiguous conditions (Na-
jar, Zamzami, and Bouguila 2019). While Najar et. al. had
opted for a Metropolis-within-Gibbs algorithm, we extend
this insight by using Hamiltonian Monte Carlo (HMC), a
gradient-informed sampling technique. HMC is better suited
for high-dimensional feature spaces, and overall scales bet-
ter compared to random walk approaches (Lee 2025). These
high-dimensional feature spaces include those produced by
modern embedding models such as MiniLM.

Implementation Pseudocode

TF-IDF + Logistic Regression (Baseline)

Algorithm 1 TF-IDF + Logistic Regression Pipeline

AR A ol ey

8:
9: end procedure

procedure TRAINTFIDFLOGREG(D = {(c;, v:) 1)
C' < Clean and lowercase all claims ¢;
X < Transform C' into TF-IDF feature matrix
Xlraina Xlesn Ytrains Yest € Train-test split
Fit Logistic Regression on (Xiain, Yirain)
y < Predict labels using Xieg
Evaluate performance using Accuracy, Precision,
Recall F1
return ¢, Binary Label

DeBERTa (Text Only)

Algorithm 2 DeBERTa Pipeline (Text Only)

1: procedure TRAINDEBERTA(D = {(c¢;, y:)}7 ;)

2:
3:

AR

T. < Tokenize claims c; using DeBERTa tokenizer

H < Run T, through DeBERTa to obtain hjcrs;
embedding

Z < Pass H through a dense layer with ReL.U acti-
vation

4 < Apply sigmoid activation on final dense layer

Compute Focal Loss Loy With @ = 0.75, v = 2

Train using AdamW optimizer, early stopping (pa-
tience = 2)

Evaluate on test set with Accuracy, F1, Precision,
Recall, ROC-AUC

return ¢, Binary Label

: end procedure

Support Vector Machine (SVM)

Algorithm 3 SVM Model Pipeline

1:
2:

3:

4:

10:
11:

procedure TRAINS VM (TrainPath, TestPath)

Dy¢ygin < LOAD AND PROCESS (TrainPath) >
Load and preprocess training data

Dyest < LOAD AND PROCESS (TestPath) >
Load and preprocess test data

Pipe <— DEFINE PIPELINE > Define feature
extraction (e.g., TF-IDF) and SVM classifier

Grid +— DEFINE PARAM GRID >
Define hyperparameters (e.g., C, kernel type, gamma)
for tuning

BestPipe <— OPTIMIZE(Pipe, Grid, D¢,q4in) > Find
best hyperparameters via cross-validation
TRAIN(BestPipe, Dyyqin) > Train the optimized
pipeline on the full training set
EVALUATE(BestPipe, Diest)
performance on the test set
SAVE MODEL(BestPipe,
Save the trained model
return BestPipe
end procedure

> Evaluate

svm_model.joblib”) >

Bayesian Inference with MCMC

Algorithm 4 Bayesian HMC Pipeline

1: procedure TRAINBAYESIANHMC(TrainPath, Test-
Path)

2: Dyrain < Load and preprocess training data from
TrainPath

3: Dyt <« Load and preprocess test data from
TestPath

4: X < Sentence embeddings (MiniLM) from D\,

5: M < Initialize BayesianClassifier with Gaussian

priors and softmax likelihood
6: Set HMC parameters: step size ¢, leapfrog steps L,
samples 7', burn-in B

7 S+ 0 > Initialize list of posterior samples
8: fori=1t0oT + Bdo
9: Oinit <+ Current model parameters
10: p Sample momentum from A/ (0, I)
11: (Oprops Pprop) ¢ Simulate dynamics via L
leapfrog steps using VU (6)
12: Pprop ¢~ —Pprop > Negate momentum to preserve
reversibility
13: a < min(1, exp(Hinic — Hprop))
14: Accept Opp with probability o, else retain 6y
15: if i > B then
16: Add accepted 8 to S
17: end if
18: end for
19: P« ﬁ > oes fo(Xiest) > Posterior predictive
average
20: 9 < Binarize P (e.g., class > 2 is true)
21: M < Evaluate y using Accuracy, Precision, Recall,

F1 Score, ROC-AUC
22: return S, g, M
23: end procedure

Experiments

We trained each model using the LIAR dataset split into
80% train, 10% validation, and 10% test. All experiments
were conducted on a consistent random seed to ensure re-
producibility.

Evaluation Metrics

We report standard classification metrics to assess model
performance:

e Accuracy
* F1 Score

* ROC-AUC (Area Under the Receiver Operating Charac-
teristic Curve)

¢ Precision / Recall

Models were evaluated under both a default threshold of 0.5
and an optimized threshold that maximized validation F1
score.

Baselines

For the DeBERTa model, we compare against a widely used
traditional baseline:

* Logistic regression + TF-IDF

Baseline Definition. Our baseline is a logistic regression
classifier trained on TF-IDF features extracted from the
claim text. This setup provides a linear, interpretable bench-
mark based solely on lexical patterns, without contextual
embeddings or metadata integration (Kleinbaum and Klein
2002).

DeBERTa Results

Performance Comparison: Baseline vs. DeBERTa
076

= Baseline (TF-IDF + LogReg)
- DeBERTa

Figure 1: Comparison of model metrics across classifiers.

Contusion Matrix (Default Threshoid = 0.5) Contusion Matrix (Optmal Threshold = 0.4035)

nnnnnnnnnnnnnn

Figure 2: Confusion matrices for DeBERTa: default (left) vs.
optimal threshold (right).

Receiver Operating Characteristic (ROC) Curve

0.8

o
o

True Positive Rate

o
s

~— ROC curve (AUC = 0.683)

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 3: ROC Curve for DeBERTa model with AUC =

0.683.

Starting model training...

Epoch 1/5

500/500] - ETA: 05 - loss: 0.0680 - accuracy: 0.6640
Epoch 1: val_loss inproved fron inf to 0.06987, saving model to BEST_deberta_model
INFO: tensorflow: Assets written to: BEST_deberta_model/assets
BEST_deberta_model/assets

ETA: 05 - loss: 0.0608 - accuracy: 0.6914
6987 to 0.06114, saving model to BEST_deberta_nodel
BEST_deberta_nodel/assets
BEST_deberta_nodel/assets

Epoch _loss inproved from
INFO: tensorf low: Assets written to:

500/500 (=

500/500] - ETA: 05 - loss: 0.0446 - accuracy: 0.7589

rom 0.06114
1

- ETA: 0s - loss: 0.0270 - accuracy: 0.8307
06114

Epoch 4: early stopping
Restoring model weights fron the end of the best epoch: 2.

- 26155 5s/step - loss: 0.0680 - accuracy: 0.6640 - val_loss: 0.0699 - val_accuracy: 0.6083

] - 56685 11s/step - loss: 0.0608 - accuracy: 0.6914 - val_loss: 0.0611 - val_accuracy: 0.6760

- 28365 6s/step - loss: 0.0446 - accuracy: 0.7589 - val_loss: .0730 - val_accuracy: 0.6168

] - 52305 10s/step - loss: 0.0270 - accuracy: 0.8307 - val_loss: 0.6795 - val_accuracy: 0.6581

Figure 4: DeBERTa Training Log showing early stopping.

Support Vector Machine (SVM) Results

Confusion Matrx (Defauit Threshold = 0.5) Confusion Matx (Optimal Threshold = 0.29)

8 4 o 141
o
B B
3 w
2 g
H E
w
H 65 H 46
H H
-
100
e T o e

Predicted Label Predicted Label

Figure 5: Confusion matrices for SVM: default (left) vs. op-

timal threshold (right).

True Positive Rate

F1 Score vs Threshold

Optimal Threshold = 0.29

Threshold

Figure 6: SVM F1 Score vs. Classification Threshold.

ROC Curve

=

B

= ROC Curve (AUC =0.591)

%0 02 04 06 08 10
False Positive Rate

Figure 7: ROC Curve for SVM model.

Probability Distribution by Class

175

150

Frequency

04
Predicted Probability

False Claims.
True Claims
=== Optimal Threshod = 0.29

Figure 8: SVM Predicted Probability Distribution by Class.

[Baseline vs. SVM

(TE-DF + LogReg)

ROC AUC

Figure 9: SVM Performance Comparison.

Markov Chain Monte Carlo (MCMC) Results

Confusion Matrix (Default Threshold = 0.5 Confusion Matrix (Optimal Threshold = 0.32) 0

e tabel
Tue tabel

= 70 Fake
Prediced label

predicted abel

Figure 10: Confusion matrices for MCMC: default threshold

(left) vs. optimal threshold (right).

ROC Curve
T
10{ — AUC =063
o
-
-
Lo
L
0.8 = =
f,’
4"
2 el
R -
-
=1
Y 04 <
H S
-
/ -
-
e
-
0.2
-
-
"’
-
-
0.0
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate
Figure 11: ROC Curve for MCMC model.
F1 Score vs. Threshold
—— F1 Score
07 -~ Optimal Threshold: 0.32 |
0.6
05
L 04
H
@
I
03
02
01
0.0
0.0 0.2 0.4 0.6 08 10

Threshold

Figure 12: MCMC F1 Score vs. Classification Threshold.

[: Baseline vs. MCMC

075 m= Baseline (TF-IDF + LogReg)
mecme

Precision Recall F1 Score ROC AUC
Metrics

Accuracy

Figure 13: MCMC Performance Comparison.

Discussion

The DeBERTa model outperforms traditional baselines
across all evaluation metrics, indicating that deep contextual
embeddings (e.g., DeBERTa’s ability to model word mean-
ing based on surrounding context) provide significant bene-
fits for verifying claim veracity.

Figure 1: Metric Comparison. Compared to the TF-IDF
+ Logistic Regression baseline, the DeBERTa model shows
notable improvements:

* Recall: 0.76 vs. 0.56 — capturing more true claims.

* F1 Score: 0.56 vs. 0.49 — better balance of precision and
recall.

e Accuracy: 0.59 vs. 0.58, and Precision: 0.45 vs. 0.43 —
modest improvements.

These gains demonstrate the benefit of transformer-based
contextual reasoning for short factual claims.

Figure 2: Confusion Matrix Analysis (DeBERTa). The
default threshold results in under-detection of true claims
(only 253 true positives), but optimizing the threshold in-
creases true positives to 313 with a slight rise in false posi-
tives. This trade-off, visualized in Figure 2, shows that low-
ering the decision threshold captures more true claims while
keeping false positives manageable—substantially improv-
ing F1 score.

Figure 3: ROC Curve (DeBERTa). The ROC curve
shows an AUC of 0.683, indicating moderate separability
between true and false claims. While not perfect, this perfor-
mance suggests that the model learns meaningful discrimi-
native patterns from claim text alone.

Note on Metadata Usage. Although our original project
plan included incorporating structured metadata features
(e.g., speaker credibility counts, party affiliation), the final
DeBERTa model implementation was limited to using the
claim text. However, the design remains extensible to multi-
input formats in future iterations, where metadata could pro-
vide complementary context.

Figure 5: Confusion Matrix Analysis (SVM). Lower-
ing the decision threshold from 0.50 to the F1-optimal
0.29 raises true positives from 65 to 403 while false posi-
tives increase from 45 to 677, illustrating a recall-precision
trade-off that boosts overall F1.

Figure 7: ROC Curve (SVM). The ROC curve yields an
AUC of 0.59, only slightly above random chance, confirm-
ing that linear SVM with TF-IDF features offers limited
class separability and relies heavily on threshold tuning.

Figure 6 and 8: Threshold Optimization (SVM). Fl
peaks at a threshold of 0.29, where the class-score
histograms intersect; choosing this cut-off maximises
true-claim capture while keeping the false-positive rate
within acceptable bounds for fact-checking.

Figure 10: Confusion Matrix Analysis MCMC). Over-
all, the MCMC model predicts true positives well. Optimiz-
ing the decision threshold from 0.5 to 0.37 increases true

positives from 273 to 377 while maintaining low false pos-
itive rates. However, the number of true negatives is overall
low (251 vs. 233). This threshold still improves overall per-
formance, maximizing the F1 score.

Figure 11: ROC Curve (MCMC). The ROC curve shows
an AUC of 0.63, meaning there is moderate class separabil-
ity. Although not as high as DeBERTa, the curve confirms
that probabilities derived from HMC sampling are reason-
ably well-calibrated and better than those of SVM.

Figure 12: Threshold Optimization (MCMC). The FI
score peaks near a threshold of 0.32, thus validating the de-
cision to switch from the standard 0.5 threshold to the 0.32
threshold. This shift accounts for smoothing effects of poste-
rior predictive averaging, and allows us to maintain a better
balance between recall and precision.

Figure 13: Performance Comparison (MCMC). The
MCMC model outperforms the TF-IDF + Logistic Regres-
sion baseline in metrics including accuracy (0.61 vs. 0.60),
recall (0.75 vs. 0.63), and F1 score (0.68 vs. 0.64). While
precision (0.63 vs. 0.65) and ROC-AUC (0.63 vs. 0.65) are
slightly lower, these differences are minimal and can be at-
tributed to the tendency of MCMC to produce smoother pos-
terior predictive distributions, and thus favoring recall.

Future Work. Several future extensions could improve
model robustness:

e Threshold calibration: Improve F1 by further fine-
tuning classification thresholds on validation data.

* Feature selection: Reduce metadata noise by selecting
only high-signal features.

* Model ensembling: Combine predictions from De-
BERTa, SVM, and Bayesian inference for better gener-
alization.

* Multiclass classification: Extend to the full six-label
structure of LIAR for finer-grained analysis.

* Cross-domain evaluation: Assess generalizability on
datasets from other fact-checking sources.

* Confidence scores: Further integrate confidence scores
(which are already being calculated) into the final pre-
dictions, allowing more detailed analysis between cate-
gories (going along with the multiclass six-label structure
above).

Conclusion

We introduced a multi-model framework for detecting mis-
information in online news, incorporating probabilistic, ker-
nel, and deep learning approaches. By evaluating Bayesian
inference, SVM, and a DeBERTa-based model on the LIAR
dataset, we demonstrated complementary benefits: while
DeBERTa delivered strong accuracy using only claim text,
the other methods offered valuable interpretability and un-
certainty quantification. Overall, Bayesian inference with

MCMLC is still a strong alternative over the baseline model,
especially when confidence probabilities are crucial to per-
forming the classification.

News Fact Checker
Al-powered fact checkin

Economic Report Shows Mixed Signals Amid
Recovery Efforts

Figure 14: Example output from the NewsFactChecker sys-
tem illustrating claim veracity scores.

In future work, we aim to fuse these models into an
ensemble to improve robustness and explore cross-domain
generalization on real-world news sources beyond LIAR.
We also plan to investigate threshold calibration techniques
to better balance precision and recall, incorporate struc-
tured metadata to potentially boost accuracy, and expand our
pipeline to support multiclass classification using the origi-
nal six-label LIAR dataset.

Acknowledgments

We thank Professor Amato for his valuable guidance and
feedback. We also appreciate the developers of libraries
such as HuggingFace Transformers, Scikit-learn, and Ten-
sorFlow, whose documentation and tools were critical in
implementing our models and experiments. Our imple-
mentation code is available at: https://github.com/
sandeepsalwanl/ClaimCheckerModels

References
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine learning 20(3):273-297.

Devlin, J.; Chang, M.-W; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. NAACL-HLT.

He, P; Liu, X.; Gao, J.; and Chen, W. 2021. Deberta:
Decoding-enhanced bert with disentangled attention. arXiv
preprint arXiv:2006.03654.

Kleinbaum, D. G., and Klein, M. 2002. Logistic Regression:
A Self-Learning Text. Springer Science & Business Media.

Lee, S. 2025. 10 insights into hamiltonian monte carlo for
high-dimensional data. Accessed: 2025-04-21.

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollar, P.
2017. Focal loss for dense object detection. In Proceedings

of the IEEE international conference on computer vision,
2980-2988.

Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.

Najar, F.; Zamzami, N.; and Bouguila, N. 2019. Fake news
detection using bayesian inference. In 2019 IEEFE 20th Inter-

national Conference on Information Reuse and Integration
for Data Science (IRI), 389-394.

Neal, R. M. 1993. Probabilistic inference using markov
chain monte carlo methods. Technical Report CRG-TR-93-
1, University of Toronto.

Wang, W. Y. 2017. Liar, liar pants on fire: A new bench-
mark dataset for fake news detection. Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers).

